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a b s t r a c t 

Domain adaptation (DA) is an important technique for modern machine learning-based medical data analysis, 

which aims at reducing distribution differences between different medical datasets. A proper domain adaptation 

method can significantly enhance the statistical power by pooling data acquired from multiple sites/centers. To 

this end, we have developed the Domain Adaptation Toolbox for Medical data analysis (DomainATM) – an open- 

source software package designed for fast facilitation and easy customization of domain adaptation methods for 

medical data analysis. The DomainATM is implemented in MATLAB with a user-friendly graphical interface, and 

it consists of a collection of popular data adaptation algorithms that have been extensively applied to medical 

image analysis and computer vision. With DomainATM, researchers are able to facilitate fast feature-level and 

image-level adaptation, visualization and performance evaluation of different adaptation methods for medical 

data analysis. More importantly, the DomainATM enables the users to develop and test their own adaptation 

methods through scripting, greatly enhancing its utility and extensibility. An overview characteristic and usage 

of DomainATM is presented and illustrated with three example experiments, demonstrating its effectiveness, 

simplicity, and flexibility. The software, source code, and manual are available online. 
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. Introduction 

Medical data analysis is nowadays being boosted by modern statisti-

al analysis tools, i.e. , machine learning ( Barragán-Montero et al., 2021;

eo, 2015; Erickson et al., 2017; Fatima et al., 2017; Rajkomar et al.,

019 ). Classic machine learning typically assumes that training dataset

source domain) and test dataset (target domain) follow an independent

ut identical distribution ( Valiant, 1984 ). In real-world practice, how-

ver, this assumption can hardly hold due to the well-known “domain

hift ” problem ( Kondrateva et al., 2021; Pooch et al., 2020; Quiñonero-

andela et al., 2009 ). In medical imaging, domain shift or data het-

rogeneity is widespread and caused by different scanning parameters

 i.e. , between-scanner variability) and subject populations in multiple

maging sites. It may increase the test error along with the distribution

ifference between training and test data ( Ben-David et al., 2007; Tor-

alba and Efros, 2011 ). Thus the domain shift/difference may greatly

egrade statistical power of multi-site/multi-center studies and hinder

he building of effective machine learning models. 

For handling the domain shift problem among datasets and enhanc-

ng the generalization ability of machine learning models, domain adap-

ation has gradually come under the spotlight of the research commu-

ity ( Csurka, 2017; Kouw and Loog, 2019; Patel et al., 2015; Wang and

eng, 2018; Wilson and Cook, 2020; Zhang et al., 2020; Zou et al.,

020 ). In the field of medical data analysis, domain adaptation has
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ained considerable attention and increasing interest recently ( Guan and

iu, 2022; Valverde et al., 2021 ). Briefly, domain adaptation can be de-

ned as follows. Let  ×  represent the joint feature space of samples

nd their corresponding category labels. A source domain  and a target

omain  are defined on the joint feature space, with different distri-

utions 𝐏 𝐒 and 𝐏 𝐓 , respectively. Suppose there are 𝑛 𝑠 samples (subjects)

ith or without category labels in the source domain, as well as 𝑛 𝑡 sam-

les in the target domain without category labels. Then the problem

s how to reduce the distribution differences/variability between source

nd target domains so as to increase the performance of down-streaming

asks such as classification or segmentation. 

Many domain adaptation methods have been proposed or utilized

n the field of medical data analysis which shows tremendous appli-

ability. Most solutions, however, are implemented independently for

ery specific scenarios or target applications. Researchers often need

o re-implement an algorithm or do methodological tailoring. The dif-

erences in implementation will often cause inconsistent experiment

nd analysis results. There is a lack of a unified platform for exten-

ive comparison of different domain adaptation methods, helping avoid

and-crafted re-implementation for specific medical data analysis re-

earch. Thus a software toolbox that provides a platform of different

daptation methods is quite beneficial and necessary for researchers

o compare, evaluate and select the proper method for their research

roject. 
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Fig. 1. Illustration of the “domain shift ” phenomenon ( Quiñonero- 

Candela et al., 2009 ) (top row) and the fundamental of domain adaptation 

(distribution of source and target samples before and after adaptation). 
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1 https://www.mingxia.web.unc.edu/domainatm/ 
An important issue for medical imaging researchers is the fast fa-

ilitation of domain adaptation algorithms. Due to privacy protection

ssues, many real-world medical data sets are not accessible or with

estrictions. Using synthetic data which is able to simulate the “do-

ain shift ” phenomenon in a machine learning setting will greatly boost

he efficiency. Another limitation is the complexity of certain domain

daptation methods. Time-consuming model training and exhaustive pa-

ameter tuning will be rather inconvenient, especially for researchers

ithout high-level programming skills. Thus, fast facilitation of domain

daptation methods with real-time visualization for performance check

s beneficial for medical data analysis. 

We also observe that in medical imaging image-level domain adap-

ation is an important topic ( Guan and Liu, 2022 ). For example, MRIs

cquired from different scanners may negatively influence the analysis

esult ( Lee et al., 2019; Wittens et al., 2021 ). This has become the con-

ern of many radiologists and neuroscientists. Thus incorporating both

eature-level and image-level adaptation methods into one platform is

eneficial for related medical imaging research. 

In light of these motivations, we develop the Domain Adaptation

oolbox for Medical data analysis (DomainATM) – a software package

hat offers a platform for simulating, evaluating and developing differ-

nt domain adaptation algorithms for medical data analysis. The tool-

ox is designed with a major principle that it could help researchers do

ast facilitation of adaptation methods. Besides real-world medical data,

ynthetic data with user-defined statistical properties can be generated

uickly for real-time simulation. Both feature-level and image-level do-

ain adaptation algorithms are included in the software package with

 graphical-user-interface (GUI). The running results will be automat-

cally saved which can be further analyzed by the evaluation module

f the toolbox. All the algorithms have consistent input/output formats

nder which the users can define their own adaptation algorithms and

dd them to the DomainATM freely. Thus the toolbox has good flexibil-

ty and scalability. 

This paper is organized as follows. In Section 2 , we introduce the

haracteristics of DomainATM, including its overall structure, key fea-

ures and functions. In Section 3 , the workflow of DomainATM for the

acilitation of domain adaptation is described. In Section 4 , representa-

ive domain adaptation methods that have been included in the toolbox

re presented. In Sections 5 and 6 , experiments for both feature-level

nd image-level adaptation are conducted to illustrate the application

f the toolbox. This paper is concluded in Section 7 . 

. Toolbox overview/characteristics 

The main structure of the DomainATM is illustrated in Fig. 2 . Cur-

ently, the toolbox consists of three modules. 1) The data module is

esponsible for loading and generating datasets. It can directly load an

xisting medical dataset (in .mat data file) or create synthetic datasets
2 
ith user-defined statistical properties that can simulate domain shift. A

ataset is in the format of 𝑀 ×𝑁 matrix, where 𝑀 denotes the number

f samples while 𝑁 represents the feature dimension. 2) The algorithm

odule contains the implementations of different domain adaptation

ethods. All these adaptation algorithms have uniform input/output pa-

ameter formats. Users can easily add their self-defined algorithms into

he toolbox with the same input/output format. By default, several rep-

esentative methods which have been widely used in medical data anal-

sis are included in the DomainATM. These methods can be categorized

nto feature-level adaptation methods and image-level adaptation meth-

ds. Besides, inspired by the design philosophy of fast facilitation, most

f the algorithms included in the toolbox can run in real time and output

esults in seconds. 3) The evaluation module assesses the performance

f different adaptation methods. For feature-level adaptation methods,

e employ two evaluation metrics, including: domain-level classifica-

ion accuracy and domain distribution distance. For image-level adap-

ation methods, we use three evaluation metrics, including correlation

oefficient (CC), peak signal-noise ratio (PSNR) and mean square er-

or (MSE). The DomainATM provides visualization functions to visual-

ze the data distribution (or images) before and after adaptation which

elps investigate and understand the performance of different domain

daptation algorithms. 

The DomainATM is implemented in MATLAB (originally imple-

ented in MATLAB 2021b on Windows 10, MATLAB 2019 or more ad-

anced versions are all good for it). Through test, DomainATM can be

un on Windows, Mac OS and Linux systems. It can be easily used with

 graphical-user-interface (GUI), as shown in Fig. 3 . The hardware plat-

orm can be a CPU-based PC (originally developed on Intel i-7 PC with

6 GB memory), which does not require much computation or memory

esources. For advanced users, DomainATM provides an interface for

riting MATLAB scripts to implement self-defined domain adaptation

ethods. The software, manual and source code for DomainATM are

ccessible online 1 . 

. Toolbox workflow 

.1. Creating/loading data 

The DomainATM can work for both feature-level adaptation and

mage-level adaptation. These two key modules in the toolbox are inde-

endent of each other. With respect to the input of feature-level adap-

ation, the toolbox accepts data in standard MATLAB .mat file format.

ach row represents an observation (subject or sample) while every col-

mn represents a feature. Existing real-world medical datasets (in .mat

ormat) can be directly imported and loaded into the toolbox for process-

ng. In addition, the users can create a synthetic dataset. After assigning

he sample number, mean value and covariance matrix, the toolbox can

utomatically generate a synthetic dataset following a normal distri-

ution. After loading the real/synthetic data, their distribution will be

utomatically displayed in the toolbox. Both the real-world and created

atasets are stored in the “data ” subfolder of the toolbox. 

For image-level adaptation, the toolbox currently accepts 3D volu-

etric data (in .nii format). All the data will be converted to inner-built

ata in MATLAB. After loading the volumetric data, a middle slice (in

xial view) will be automatically shown. Note that the “Create Dataset ”

odule currently only generates data for feature-level domain adapta-

ion. 

.2. Selecting domain adaptation algorithms 

After loading the data, the following procedure is to select, configure,

nd run the domain adaptation methods. Most adaptation methods have

everal hyper-parameters to be set. Users can tune them according to the

https://www.mingxia.web.unc.edu/domainatm/
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Fig. 2. Illustration of workflow of the DomainATM software. The DomainATM consists of three major components: 1) the data module loads or creates the datasets; 

2) the algorithm module conducts feature-level or image-level domain adaptation and saves the results; and 3) the evaluation module assesses the adaptation 

performance according to specific metrics. DA: Domain Adaptation. 

Fig. 3. Graphical-User-Interface (GUI) of DomainATM. 
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pecific tasks. Otherwise, default settings of these methods will be used.

fter configuration, the users can run the algorithms. All the built-in

ethods provided by the toolbox are simple, easy to use, and can run

n real time within 5 seconds (on a PC with an Intel i-7 CPU, 16 GB

emory). 

After running the adaptation methods, the results will be automat-

cally saved in the “evaluation ” subfolder of the toolbox. For feature-

evel adaptation, the original source/target data, and the adapted

ource/target data will be saved (in .mat data format). For image-level

daptation, the adapted source images (target image is used as the ref-

rence image and will not be changed) will be saved (in .nii format).
3 
ll the files are named with the corresponding adaptation method with

ime stamp. 

.3. Evaluating data adaptation performance 

After running the adaptation methods and getting the results, per-

ormance evaluation can be conducted for the methods. For feature-

evel adaptation, we use distribution difference and domain-level classi-

cation accuracy as two metrics to assess the adaptation performance.

or image-level adaptation, we adopt correlation coefficient (CC), peak

ignal-to-noise ratio (PSNR) and mean-square error (MSE) to evaluate the

daptation result. More details about these evaluation metrics will be

laborated in the experiment section. 

.4. Visualization of data adaptation results 

Besides quantitative evaluation, result visualization is useful for

ualitative analysis. The DomainATM provides visualization functions

hat help users better understand domain adaptation for medical data.

or feature-level adaption, the feature distribution (in 2D space) be-

ore and after adaptation can be visualized. High-dimensional features

ill be mapped to 2D feature space via t-SNE ( Van der Maaten and

inton, 2008 ). For image-level adaptation, the adapted source image,

he original source and target images can be viewed using the tool-

ox. After the adapted images have been saved in the “evaluation ” sub-

older, they can also be visually inspected by other medical imaging

oftware. 

.5. Extension: Adding self-defined data adaptation algorithm 

In some tasks of medical data analysis, users might need to develop

heir own domain adaptation methods. The DomainATM supports self-

efined algorithms for task-specific usage. The users can write a MAT-

AB script to define and implement their algorithms. The input/output

ormat of the self-defined functions has to be consistent with other built-

n adaptation methods. When adding an new algorithm, the self-defined

cript should be put in the “algorithms_feat ” (feature-level) or the “al-

orithms_img ” (image-level) subfolders in the toolbox. One can sim-



H. Guan and M. Liu NeuroImage 268 (2023) 119863 

p  

G

4

 

a  

f

4

4

 

g

4

 

i  

s  

t  

h

4

 

m  

a  

p

4

 

a  

m  

c  

t

4

 

d  

d  

t  

l  

r

4

 

(  

i  

t  

t  

d

4

 

r  

t  

p  

i  

k  

u

4

 

e  

t  

d  

o  

T

4

 

p  

t  

i  

m  

u  

f

4

 

l  

t  

b  

s

4

4

 

m  

i  

t

4

 

t  

t  

c

4  

 

fi  

s  

a  

i  

v  

h  

f  

t

 

f  

a  

a  

m  

a  

5

a

5

 

u  

S  

p

 

 

 

 

 

 

ly run and analyze their methods like the other built-in ones through

UI. 

. Algorithms 

In this section, we briefly introduce the algorithms for feature-level

nd image-level data adaptation in DomainATM. More details can be

ound in the online manual. 

.1. Feature-level data adaptation algorithm 

.1.1. Baseline 

No feature-level domain adaptation is utilized. Both source and tar-

et data are kept in their original distributions (in the feature space). 

.1.2. Subspace Alignment (SA) 

In this algorithm ( Fernando et al., 2013 ), the source and target med-

cal data are represented by subspaces in terms of eigenvectors. The

ource data are projected to the target domain through a transforma-

ion matrix. No category labels of source domain are needed. The key

yper-parameter is the dimension of the shared subspace. 

.1.3. Correlation Alignment (CORAL) 

In this algorithm ( Sun et al., 2016 ), domain shift/difference is mini-

ized by aligning the second-order statistics ( e.g. , covariance) of source

nd target distributions. No category label information and hyper-

arameters are required for this method. 

.1.4. Transfer Component Analysis (TCA) 

In this algorithm ( Pan et al., 2010 ), a subspace shared by the source

nd target domain is searched in a reproducing kernel Hilbert space by

inimizing the maximum mean discrepancy (MMD) distance. No source

ategory labels are demanded. The key hyper-parameters are the kernel

ype and subspace dimension. 

.1.5. Optimal Transport (OT) 

In this algorithm ( Guan et al., 2021b ), the samples in the source

omain are projected into the target domain while keeping their con-

itional distributions. The projection is facilitated through minimiza-

ion of Wasserstein distance between the two distributions. No category

abels of the source domain are used. The key hyper-parameter is the

egularization coefficient. 

.1.6. Joint Distribution Adaptation (JDA) 

In this algorithm ( Long et al., 2013 ), maximum mean discrepancy

MMD) is adopted to measure domain distribution differences, and is

ntegrated into Principal Component Analysis (PCA) to build a represen-

ation that is robust to domain shift. Source category labels are needed in

his algorithm. The key hyper-parameters include kernel type, subspace

imension and regularization parameter. 

.1.7. Transfer Joint Matching (TJM) 

In this algorithm ( Long et al., 2014 ), feature matching and instance

eweighting strategies are combined to reduce domain shift. Minimiza-

ion of maximum mean discrepancy (MMD) and 𝑙 2 , 1 norm sparsity

enalty on source data are integrated into PCA to construct domain-

nvariant features. Category labels of source domain are required. The

ey hyper-parameters include kernel type, subspace dimension and reg-

larization parameter. 

.1.8. Geodesic Flow Kernel (GFK) 

In this algorithm ( Gong et al., 2012 ), the source and target data are

mbedded into the Grassmann manifolds, and the geodesic flows be-

ween them are used to model domain shift. Domain adaptation is con-

ucted by projecting the data into several domain-invariant subspaces

n the geodesic flow. Source category labels can be either used or not.

he key hyper-parameter is the subspace dimension. 
4 
.1.9. Scatter Component Analysis (SCA) 

In this algorithm ( Ghifary et al., 2016 ), original features are firstly

rojected to a reproducing kernel Hilbert space. Domain adaptation is

hen conducted through an optimization formulation, including max-

mizing the class separability, maximizing the data separability, and

inimizing domain mismatch. Category labels of the source domain are

sed during adaptation. The key parameter is the dimension of the trans-

ormed space. 

.1.10. Information-Theoretical Learning (ITL) 

In this algorithm ( Shi and Sha, 2012 ), an optimal feature space is

earned through jointly maximizing domain similarity and minimizing

he expected classification error on target samples. Source category la-

els are required. The key hyper-parameters include subspace dimen-

ion and regularization parameter. 

.2. Image-level data adaptation algorithm 

.2.1. Baseline 

For two medical images acquired by different scanners/sites, no do-

ain adaptation is facilitated in this method. Instead, the homogene-

ty/heterogeneity of the paired original images is directly compared in

erms of certain evaluation metrics. 

.2.2. Histogram Matching (HM) 

This method transforms source image to make its histogram matches

he histogram of the target image ( Shinohara et al., 2014 ). After adapta-

ion, the intensity distributions of the source and target images become

loser. 

.2.3. Spectrum Swapping-based Image-level MRI Harmonization (SSIMH)

In this method ( Guan et al., 2022 ), the source and target images are

rstly transformed into the frequency domain ( e.g. , through Discrete Co-

ine Transform). Then, part of the low-frequency region of source im-

ge is replaced by the corresponding low-frequency area of the target

mage. Finally, the source image in the revised frequency domain is in-

erted back to the spatial domain to get the adapted image. The key

yper-parameter of this method is the threshold which defines the low-

requency region that is swapped between source and target images. In

he toolbox, the default value is set to 3. 

The image-level domain adaptation methods work well in two dif-

erent settings. (1) One-to-one image harmonization: Given a source im-

ge and a target/reference image, one can select a specific algorithm to

dapt the source image to the target image space. (2) Batch image har-

onization: Given multiple source images and a target image, we can

dapt all source images to target image space via batch harmonization.

. Empirical evaluation of feature-level data adaptation 

lgorithms in DomainATM 

.1. Evaluation metric 

For feature-level adaptation methods, we adopt the metrics that eval-

ate the distribution changes before and after the adaptation process.

pecifically, we use the following three methods/metrics for adaptation

erformance evaluation. 

• Distribution difference. We adopt maximum mean discrepancy

(MMD) to measure the data distribution differences between the

source and target domains before and after domain adaptation. As a

popular metric, the maximum mean discrepancy (MMD) has been

widely used in domain adaptation research ( Kumagai and Iwata,

2019; Long et al., 2013; 2014; Pan et al., 2010; Wang et al., 2021;

Yan et al., 2017 ), defined as follows: 

𝐌𝐌𝐃 

2 
𝑘 
= 

‖‖‖𝐄 𝑝 [ 𝜙( 𝐱 𝑠 )] − 𝐄 𝑞 [ 𝜙( 𝐱 𝑡 )] 
‖‖‖
2 

 

(1) 

𝑘 
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Fig. 4. Distribution of the synthetic data (baseline) and adapted data by nine different domain adaptation methods in the DomainATM toolbox. ( positive source 

samples; positive target samples; negative source samples; negative target samples). 
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Table 1 

Domain classification accuracy (%) using different classifiers on the synthetic 

dataset. (SVM: support vector machine; RF: random forest). 

Method Baseline SA CORAL OT TCA TJM JDA GFK SCA ITL 

SVM 85 47 80 35 77 40 41 39 60 41 

RF 85 51 82 24 60 47 37 41 78 59 
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where  𝑘 denotes the Reproducing Kernel Hilbert Space endowed

with a kernel function 𝑘 , and 𝑘 ( 𝐱 𝑠 , 𝐱 𝑡 ) = 

⟨
𝜙( 𝐱 𝑠 ) , 𝜙( 𝐱 𝑡 ) 

⟩
. If the MMD

distance of source and target domains gets lower after adaptation, it

indicates the data distribution difference becomes smaller. 
• Domain classification. Suppose an equal number of samples are

sampled from the source and target domains, respectively. These

samples are assigned with domain labels, i.e. , the source samples are

labeled as “1 ” while target samples are assigned with the label “0 ”.

A domain discriminator/classifier is applied to all samples for distin-

guishing which samples come from the source domain and which

ones are from the target domain. The classification result is used

to assess domain shift/difference. A high domain classification ac-

curacy indicates that the source and target samples can be easily

distinguished, which means the domain shift is large. In contrast, if

the domain classification accuracy drops down after the adaptation

processing, it indicates the domain adaptation algorithm works be-

cause it makes the two domains get closer and become more difficult

to distinguish. 

.2. Experiment 1: Adaptation on synthetic dataset 

We first conduct experiments on synthetic datasets using Do-

ainATM. Users can set the statistical properties of the synthetic data

reely using DomainATM, and thus, can conduct fast test of different do-

ain adaptation methods, which is helpful for understanding the char-

cteristics of different methods and avoiding the access restrictions of

any real-world medical datasets. Specifically, we generate two do-

ains by Gaussian distributions. Each domain has two classes, with 30

ositive samples and 30 negative ones, respectively. For the source do-

ain , the means of positive and negative samples are [0, 0] and [0,

], while their covariance matrices are [0.2, 0; 0, 0.2] and [0.1, 0; 0,

.1]. For the target domain  , the means of positive and negative sam-

les are [1, -0.5] and [1, 0.2], while their covariance matrices are [0.2,

; 0, 0.2] and [0.1, 0; 0, 0.1]. 

.2.1. Data distribution visualization 

The distributions of the original data and the adapted data by differ-

nt methods are visualized in Fig. 4 . From the visualization result, differ-

nt domain adaptation methods can reduce the distributions of source

nd target samples to certain extent. For example, the optimal transport

daptation (OT) can project the source data into the target domain, and

ake the source distribution quite similar to the target domain. 
5 
.2.2. Distribution difference 

The data distribution differences (in terms of maximum mean dis-

repancy) of the source and target domains after domain adaptation are

hown in Fig. 5 . The result of the Baseline method shows the original

istribution of the source and target domain without any adaptation

rocessing. From Fig. 5 , we can observe that domain adaptation can re-

uce the distribution differences between the original source and target

omains. 

.2.3. Domain-level classification 

We conduct domain-level classification on the source and target data.

 domain classifier (we use a k-nearest neighbors classifier) is trained

ith source data (with the label “1 ”) and target data (with the label

0 ”). Source and target data are combined together and shuffled. In the

xperiments, we use 60% of the entire data samples for training the do-

ain classifier while 40% are for test. The result of domain classification

ccuracy is shown in Fig. 6 . 

We also use another two classifiers, i.e. , support vector machine

SVM) and random forest (RF) for domain-level classification. For the

VM, we use a linear kernel and the penalty parameter C is set to 1.

or the RF, 50 decision trees are used for the ensemble classification.

hese settings are also used for the other experiments. Their domain-

evel classification results are shown in Table 1 . 

From Fig. 6 and Table 1 , it can be seen that the domain classification

ccuracy drops after domain adaptation even different classifiers are

sed. This implies that source and target data become more difficult

o be distinguished, i.e. , domain adaptation makes their distributions

ecome more similar than in the original space. 

.3. Experiment 2: Adaptation for Alzheimer’s disease analysis on ADNI 

We conduct experiments on the Alzheimer’s Disease Neuroimaging

nitiative (ADNI) dataset ( Jack Jr et al., 2008 ). The dataset consists of

1-weighted MRI data for Alzheimer’s disease (AD) analysis. We use
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Fig. 5. Synthetic data distribution differences in terms 

of maximum mean discrepancy before (baseline) and 

after domain adaptation using nine feature-level adap- 

tation methods. 

Fig. 6. Synthetic data distribution differences in terms 

of domain-level classification accuracy on the syn- 

thetic dataset before (baseline) and after domain adap- 

tation using nine feature-level adaptation methods. 
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Table 2 

Domain classification accuracy (%) using different classifiers on the ADNI-1 and 

ADNI-2 datasets. (SVM: support vector machine; RF: random forest). 

Method Baseline SA CORAL OT TCA TJM JDA GFK SCA ITL 

SVM 79 43 79 43 77 43 43 43 43 43 

RF 85 64 85 52 80 63 58 60 50 57 
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wo subsets of ADNI, i.e. , ADNI-1 (100 subjects with 1.5T T1-weighted

tructural MRIs) and ADNI-2 (100 subjects with 3.0T T1-weighted struc-

ural MRIs) as the source and target domains, respectively, to test the

omain adaptation algorithms using DomainATM. ADNI-1 contains 50

atients with Alzheimer’s disease (AD) (positive samples) and 50 nor-

al control (NC) subjects (negative samples). ADNI-2 has 50 CE sub-

ects and 50 NC subjects. All the MRIs have been processed through a

tandard pipeline, including skull stripping, intensity correction, regis-

ration and re-sampling. Regions-of-interest (ROIs) features which are

efined on 90 regions in the Anatomical Automatic Labeling (AAL) at-

as ( Tzourio-Mazoyer et al., 2002 ) are used to represent each subject.

he 90-dimensional features denote the gray matter volumes in each

rain region. 

.3.1. Distribution visualization 

The distributions of original ADNI-1 and ADNI-2 data (in feature

pace) and the adapted data by different methods are visualized in Fig 7 .

rom the visualization results, the original source and target data have a

elatively clear boundary. After domain adaptation, the domain bound-

ries become blurred, and the distribution of source and target domains

ets closer to each other. 

.3.2. Distribution distance 

The distribution differences (in terms of maximum mean discrep-

ncy) of the source data, i.e. , ADNI-1, and target data, i.e. , ADNI-2, after

omain adaptation are shown in Fig. 8 . The baseline illustrates the origi-

al distribution of the source and target domain without any adaptation

rocessing. From the result, it can be observed that domain adaptation

s able to reduce the distribution differences between the original source

nd target domains. 
6 
.3.3. Domain-level classification 

We facilitate domain-level classification on the source data, i.e. ,

DNI-1, and target data, i.e. , ADNI-2. A domain classifier (k-nearest

eighbors classifier) is trained with source data (with the label “1 ”) and

arget data (with the label “0 ”). Source and target data are combined

ogether and shuffled. 60% of the entire data are adopted for training

hile 40% for testing. The result of domain-level classification is illus-

rated in Fig. 9 . Another two classifiers, including support vector ma-

hine (SVM) and random forest (RF) are also adopted for domain-level

lassification, and the result is listed in Table 2 . From Fig. 9 and Table 2 ,

e can see that the domain classification accuracy drops after domain

daptation despite the different types of domain classifiers. This indi-

ates that the adapted source and target data get more difficult to be

orrectly classified, i.e. , domain adaptation is effective in reducing their

istribution differences. 

.4. Experiment 3: Domain adaptation for autism analysis on ABIDE 

We conduct experiments on the Autism Brain Imaging Data Exchange

ABIDE) dataset ( Di Martino et al., 2014 ). This database consists of

esting-state functional MRI (fMRI) data for Autism analysis. We use two

ites from the ABIDE project, i.e. , NYU (184 subjects) and UM (145 sub-
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Fig. 7. Distribution of the original ADNI data (baseline) and adapted data by nine feature-level domain adaptation methods in the DomainATM toolbox. ( positive 

source samples; positive target samples; negative source samples; negative target samples). 

Fig. 8. Data distribution differences in terms of 

maximum mean discrepancy on ADNI-1 and ADNI- 

2 before (baseline) and after domain adaptation op- 

erations. 

Fig. 9. Data distribution differences in terms of 

domain-level classification accuracy on ADNI-1 

and ADNI-2 before (baseline) and after domain 

adaptation operations. 
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S  
ects) as the source and target domains, respectively, to test the domain

daptation algorithms using the DomainATM. The NYU site consists of

9 positive samples (autism patients) and 105 negative samples (normal

ontrols). These fMRIs are acquired by a 3 Tesla Allegra scanner. The

M site includes 68 positive samples (autism patients) and 77 negative

amples (normal controls). These fMRIs are acquired using a 3 Tesla

E scanner located at the UM Functional MRI Laboratory. All the fM-

Is go through a standard pipeline, including slice-timing and motion
7 
orrection, nuisance signal regression, temporal filtering, and registra-

ion. The mean time series of 116 regions-of-interest (ROIs) defined by

he Anatomical Automatic Labeling (AAL) atlas ( Tzourio-Mazoyer et al.,

002 ) are extracted. Then, a 116 × 116 symmetrical resting-state func-

ional connectivity (FC) matrix is generated for each subject, with each

lement representing the Pearson correlation coefficient between a pair

f ROI signals. We extract the node betweenness centrality ( Rubinov and

porns, 2010 ) based on the FC matrix to represent each subject/sample.
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Fig. 10. Distribution of the original ABIDE data (baseline) and adapted data by nine feature-level domain adaptation methods in the proposed DomainATM toolbox. 

( positive source samples; positive target samples; negative source samples; negative target samples). 

Fig. 11. Data distribution differences of two sites 

of ABIDE in terms of maximum mean discrepancy 

before (baseline) and after domain adaptation us- 

ing nine feature-level adaptation methods. 
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Table 3 

Domain classification accuracy (%) using different classifiers on two sites of 

ABIDE dataset. (SVM: support vector machine; RF: random forest). 

Method Baseline SA CORAL OT TCA TJM JDA GFK SCA ITL 

SVM 69 55 67 55 68 55 55 55 55 65 

RF 66 55 64 31 66 48 43 50 65 63 
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.4.1. Distribution visualization 

The original distributions of two sites in ABIDE (in feature space) and

he adapted data by different methods are visualized in Fig. 10 . From

he visualization result, it can be observed that the boundary between

riginal source and target data is relatively clear. After the domain adap-

ation processing, the domain boundaries become blurred, and the dis-

ributions of source and target domain get similar to each other. 

.4.2. Distribution distance 

The data distribution differences (in terms of MMD) of the source

YU domain and target UM domain after domain adaptation are shown

n Fig. 11 . The baseline is the original distribution of the source and

arget domain without any adaptation processing. The result shows that

he distribution differences become smaller after adaptation processing

y different algorithms. 

.4.3. Domain-level classification 

We facilitate domain-level classification on the source data, i.e. ,

YU, and target data, i.e. , UM. A domain classifier (k-nearest neigh-

ors classifier) is trained with source data (with the label “1 ”) and tar-

et data (with the label “0 ”). Source and target data are combined to-

ether and shuffled. 60% of the entire data are adopted for training

hile 40% for test. The result of domain-level classification accuracy is

llustrated in Fig. 12 . We also use support vector machine (SVM) and

andom forest (RF) to conduct the domain-level classification, and the
8 
esult is shown in Table 3 From the results, the domain classification

ccuracy gets worse after domain adaptation processing regardless of

hat domain classifiers have been used. This indicates that the adapted

ource and target data become more difficult to be discriminated, i.e. ,

sing domain adaptation has successfully reduced their distribution dif-

erences. 

.5. Discussion 

In the above experiments, we use two quantitative metrics, i.e. , MMD

nd domain classification accuracy, to evaluate the performance of dif-

erent domain adaptation methods in DomainATM. The MMD is a direct

ssessment metric because it is directly calculated based on the statis-

ical properties of source and target domains (datasets). Generally, if

ethod A achieves a smaller MMD than method B, then A is supposed

o be better. Domain classification accuracy is an indirect metric because

t relies on a specific domain classifier. But it can also reflect the adap-
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Fig. 12. Data distribution differences in terms of 

domain-level classification accuracy on two sites of 

ABIDE before (baseline) and after domain adapta- 

tion using nine feature-level adaptation methods. 

Table 4 

Running time (in terms of seconds) of nine domain adaptation algorithms in 

DomainATM on three datasets. 

Method SA CORAL OT TCA TJM JDA GFK SCA ITL 

Synthetic 0.09 0.05 1.28 0.06 0.19 0.85 0.09 1.04 0.06 

ADNI 0.05 0.01 2.78 0.04 0.21 0.92 0.09 1.13 0.13 

ABIDE 0.03 0.01 6.07 0.07 0.26 0.92 0.09 1.74 0.25 
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t  
ation performance since confusing a classifier is difficult. If method A

chieves a smaller domain classification accuracy than method B, then

 is supposed to be better. Based on the experimental results, we have

he following empirical findings. 

• The CORAL, TCA and SCA algorithms have relatively worse domain

adaptation performance than the other methods. They get signifi-

cantly higher MMD values and domain classification accuracy than

the others. 
• The OT algorithm achieves the overall best performance among

these adaptation methods. It generally produces the smallest MMD

value and domain classification accuracy in all these three experi-

ments. 
• On the ADNI dataset, the TJM, JDA, GFK and ITL have comparable

performance. They get similar domain classification accuracy and

low MMD. On the ABIDE dataset, the algorithm ITL is worse than

the others. 
• Most algorithms are effective in significantly reducing the MMD

value. By contrast, the domain classification accuracy is more dif-

ficult to reduce. This implies that it is challenging to confuse or de-

ceive a domain classifier with certain domain adaptation methods.

Thus, domain classification accuracy is a rigorous metric to assess

the robustness of an adaptation algorithm. 

We also conduct statistical testing for performance comparison in

erms of domain classification accuracy. Specifically, we compute the

 -values via paired sample t -test between each adaptation method and

he baseline. The p -values are smaller than 0.05, indicating that their

ifferences are significant. In addition, we calculate the running time of

ach domain adaptation algorithm for each dataset on a PC with an Intel

-7 CPU and 16 GB memory. The comparison result is listed in Table 4 . 

. Empirical evaluation of image-level data adaptation 

lgorithms in DomainATM 

.1. Evaluation metrics 

For image-level adaptation methods, we adopt the metrics that eval-

ate the image similarity/dissimilarity before and after adaptation.
9 
pecifically, we adopt the following three metrics for image-level adap-

ation performance evaluation. 

• Correlation Coefficient (CC). Denote the source and target images

as  𝑠 and  𝑡 . After adaptation, we get  ′
𝑠 
. For performance assess-

ment, if the correlation coefficient of  ′
𝑠 

and  𝑡 is higher than  𝑠 and

 𝑡 , it indicates the corresponding adaptation algorithm works. 
• Peak Signal-to-Noise Ratio (PSNR). If the peak signal-to-noise ra-

tio of  ′
𝑠 

and  𝑡 is higher than  𝑠 and  𝑡 , it indicates the adaptation

algorithm works. 
• Mean-Squared Error (MSE). If the mean-squared error of  ′

𝑠 
and  𝑡 

is smaller than  𝑠 and  𝑡 , it indicates the adaptation algorithms are

effective. 

.2. Materials and settings 

Phantom data of five traveling subjects with T1-weighted (T1-w)

tructural MRIs from the ABCD dataset ( Volkow et al., 2018 ) are used for

erformance evaluation. Phantom-1 is scanned by GE and Philips scan-

ers, respectively. Phantom-2 and Phantom-3 are acquired by Siemens

nd GE scanners, respectively. Phantom-4 and Phantom-5 are scanned

y Philips and Siemens scanners, respectively. The protocols of the GE,

hilips and Siemens scanners are consistent. These phantoms are used to

est the performance of image-level domain adaptation methods in han-

ling domain shift caused by different scanners. All these 3D MRIs are

aw data in the NIfTI file format. We do not perform any pre-processing

uch as skull-stripping, registration or segmentation before image-level

daptation. During adaptation, the intensity of each image is normal-

zed to the range of [0, 1]. For these volumetric images which contain

ultiple slices, the adaptation is facilitated on each slice, then the per-

ormance is calculated as an average metric value for all the slices within

n image (volume). 

.3. Result 

We conduct image-level domain adaptation on these five phantom

tructural MRI data, and the adaptation results in terms of the three met-

ics are shown in Table 5 . From the result, it can be observed that image-

evel domain adaptation methods can generally achieve higher scores of

orrelation coefficient (CC) and peak signal-to-noise ratio (PSNR) and

maller mean square error (MSE). In some cases ( e.g. , GE → Philips), the

istogram Matching (HM) does not perform very well in terms of PSNR

nd MSE. Overall, the result indicates that image-level adaptation meth-

ds are useful in reducing the distribution shift between images caused

y different scanners. 

.4. Visual inspection 

To further investigate the effectiveness of image-level domain adap-

ation, we do visual inspections of the MRIs that are adapted to dif-
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Table 5 

Results of three image-level domain adaptation methods on T1-weighted MRIs of five traveling phantom subjects acquired by three 

different scanners from the ABCD dataset. 

Source Domain →Target 

Domain (Subject ID) 

Method CC PSNR MSE 

GE →Siemens (Phantom-2, 

Phantom-3) 

Baseline 0.4889 ± 0.0081 21.4143 ± 2.8718 0.0080 ± 0.0049 

HM 0.5642 ± 0.0395 22.3131 ± 2.5975 0.0064 ± 0.0037 

SSIMH 0.5935 ± 0.0221 22.7624 ± 2.5310 0.0057 ± 0.0032 

Philips →Siemens 

(Phantom-4, Phantom-5) 

Baseline 0.5408 ± 0.0194 18.7578 ± 0.8847 0.0135 ± 0.0028 

HM 0.5495 ± 0.0388 18.7477 ± 1.1303 0.0135 ± 0.0035 

SSIMH 0.6098 ± 0.0269 20.1269 ± 1.8421 0.0101 ± 0.0042 

GE →Philips (Phantom-1) Baseline 0.4682 21.3915 0.0073 

HM 0.5108 21.2482 0.0075 

SSIMH 0.5570 22.6421 0.0054 

Fig. 13. Image-level domain adaptation via the Spectrum Swapping-based Image-level MRI Harmonization (SSIMH) method ( Guan et al., 2022 ) for T1-weighted 

(T1-w) MRIs acquired by different scanners. Domain shift caused by the use of different scanners can be partly reduced by image-level adaptation via SSIMH. 
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erent scanner styles. We divide the phantom MRIs into three groups

n terms of the scanners. Then we adapt MRIs acquired by one scan-

er to the styles of MRIs scanned by other scanners. We use the SSIMH

ethod ( Guan et al., 2022 ) in DomainATM to perform image-level adap-

ation. Fig. 13 shows the results of three different MRIs and their corre-

ponding adapted images to different scanner styles. From the result, we

ave the following two observations. 1) Different scanners ( i.e. , Siemens,

hilips and GE) have a significant impact on the MRIs, which can cause

he domain shift. 2) The image-level domain adaptation method is ef-

ective in harmonizing the source image to the target image (reference

mage) and reducing the domain shift caused by different scanners. 
10 
. Conclusion and future work 

Domain adaptation has become an important topic in the field of

edical data analysis. In this paper, we develop a Domain Adaptation

oolbox for Medical data analysis (DomainATM), aiming to help re-

earchers facilitate fast domain adaptation for medical data acquired

rom different sites/scanners. The DomainATM is easy to use, efficient

o run, and most importantly, it is able to do both feature-level and

mage-level adaptation. In addition, users can add their own domain

daptation algorithms into the toolbox, making it flexible and extensi-

le. Experiments on both synthetic and real-world medical datasets have
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een conducted to show the usage and effectiveness of DomainATM.

e hope the toolbox can provide more convenience and benefit for re-

earchers to do domain adaptation research in medical data analysis. 

There are several potential future works to further enrich and ex-

end the DomainATM. First , for the sake of fast and easy facilitation of

omain adaptation in medical imaging data, we only include machine

earning methods in the current version, without considering deep learn-

ng methods that often require large computation resources. In the fu-

ure, we plan to develop another version of the toolbox to include deep

earning methods (such as various GANs ( Sinha et al., 2021; Yi et al.,

019 ) and CNNs ( Guan et al., 2021a; Tibrewala et al., 2020 )). Second ,

he current evaluation metrics merely reflect domain differences, lack-

ng the ability to further analyze practical applications ( e.g. , to what

xtent Dice scores in a segmentation application varies before and after

omain adaptation). We will address this issue to enrich the toolbox in

he future. Besides , we plan to further improve the graphic user inter-

ace to enable users to set and tune the hyper-parameters of each domain

daptation method in a more convenient manner. 
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